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Abstract

Differencing predictions of linear regression models generated from hydrographic data
collected at different times (the eMLR method) was proposed as a means of quantify-
ing the dominant patterns of change in oceanic anthropogenic carbon in the context of
sparse data sets subject to natural variability. The ability of eMLR to recover the anthro-5

pogenic carbon signal in the North Atlantic was tested using a global circulation and
biogeochemistry model. Basin-scale applications of eMLR on horizontal layers can es-
timate the change in anthropogenic carbon inventory with an accuracy typically better
than 10 %. Regression model selection influences the distribution of the recovered an-
thropogenic carbon change signal. The systematic use of statistically optimum regres-10

sion formulae does not produce the best estimates of anthropogenic carbon change if
the distribution of the station locations emphasizes hydrographic features differently in
time. Additional factors, such as a balanced station distribution and vertical continuity
of the regression formulae should be considered to guide model selection. Accurate
results are obtained when multiple formulae are used throughout the water column.15

Different formulae can yield results of similar quality. The fact that good results are ob-
tained in the hydrographically complex North Atlantic suggests that eMLR can produce
accurate estimates in other basins.

1 Introduction

Since publication of the global cumulative mid-1990s anthropogenic carbon inventory20

estimate (Sabine et al., 2004), a measure of the time-integrated anthropogenic signal,
attention has turned toward methodologies capable of monitoring the carbon uptake
directly. Owing to the size of the oceanic carbon stores and the role of the ocean
as a long-term sink of excess carbon dioxide, perturbations, progressive saturation or
a decrease of the oceanic uptake rate (Schuster and Watson, 2007; Corbiere et al.,25

2007; Le Quéré et al., 2007; Khatiwala et al., 2009) can have large impacts on the
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atmospheric concentrations. Accurate knowledge of the uptake rate and its interan-
nual variability (McKinley et al., 2011) has thus important policy implications for carbon
mitigation.

Independant assessements using atmospheric and oceanic carbon observations for
the period 1995–2000 constrain the mean oceanic uptake rate of anthropogenic car-5

bon to 2.2±0.3PgCyr−1 (Gruber et al., 2009). While estimates of the uptake rate tend
to converge (Wetzel et al., 2005; Takahashi et al., 2002, 2009; Mikaloff-Fletcher et al.,
2006; Khatiwala et al., 2009), assessments diverge on a regional level, showing dif-
ferent uptake and storage patterns (Sabine et al., 2004; Waugh et al., 2006), espe-
cially in the Southern Ocean (Caldeira and Duffy, 2000; Lo Monaco et al., 2005a,b;10

Le Quéré et al., 2007). These differences have important mechanistic implications for
the understanding and prediction of the marine carbon cycle and argue for improved
observational estimates.

Quantification of the oceanic anthropogenic carbon concentration and the charac-
terization of its time rate of change are challenging. First, anthropogenic carbon is the15

difference between the comtemporary dissolved inorganic carbon (DIC), i.e. the mea-
sured DIC, and an estimate of the natural DIC; that is, the DIC field thought to have
existed in the absence of human activity (Gruber et al., 2009). This implies assump-
tions regarding the cylcing of natural carbon. The anthropogenic carbon fraction is
small relative to the background DIC concentration (of order ≤ 5% of the DIC in the up-20

per ocean). Even if the current analytical precision is sufficient to detect DIC changes
on interannual to decadal time-scales (Brewer et al., 1997; Winn et al., 1998; Bates,
2001), natural variability confounds efforts to quantify the dynamics of the marine an-
thropogenic carbon sink on these scales (Keeling, 2005; Sabine et al., 2008; McKinley
et al., 2011).25

Additional difficutlies are associated with monitoring and sampling strategies. Basin
or global scale databases represent assemblages of data collected by individual
cruises over many years. Owing to logistical limitations and since each cruise has its
own scientific objectives, the large-scale spatio-temporal distribution of the data is not
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ideal. While new samples are often collected close to older stations, this is not always
the case. As such, direct point-by-point data comparison in time is only possible for
specific cruises and cannot necessarily be used to infer temporal changes on the basin
scale. While a point-by-point analysis allows for a good control of the time difference
between repeat samples locally (Levine et al., 2008; Sabine et al., 2008; Wanninkhof5

et al., 2010), this approach would only be applicable to a subset of the data for which
repeat measurements exist. A strict section-by-section or station-by-station strategy
would thus not be able to exploit the many samples for which no repeat exists. A form
of extrapolation, which considers data in entire regions instead of constrained along
sections, is thus desireable to exploit all available data.10

Wallace (1995) and Friis et al. (2005) proposed to compare empirical regres-
sion model representations of the measurements instead of directly comparing time-
separated measurements to maximize data use, filter out the natural spatio-temporal
variability and to generate spatial prediction; this is known as the extended Multiple Lin-
ear Regression (eMLR) approach. A few studies have described various aspects and15

limitations of the eMLR methodology either in models or applied to data (Friis et al.,
2005; Tanhua et al., 2007; Levine et al., 2008; Wanninkhof et al., 2010; Goodkin et al.,
2011). In preparation to an application of the eMLR approach to global data sets, we
add to these previous efforts by addressing two points not thoroughly covered in the
existing eMLR literature: the influence of regression model selection and the effect of20

variable observational sampling networks on eMLR-derived estimates of the interan-
nual to decadal change in the ocean interior carbon inventory.

The eMLR procedure, under the constraint of the observational sampling network
available, is here evaluated using a circulation model that includes carbon and nutrient
biogeochemistry in which the true anthropogenic signal is known exactly. The model25

framework used provides a means of estimating absolute errors in the presence of
natural temporal and spatial variability patterns that are consistent with many observed
climate processes on a variety of time and space scales.
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An accuracy target for the rate of change of anthropogenic carbon inventory of
0.1 PgCyr−1 for each of the major ocean basins (3 PgC globally over 10 yr, 10 % of
the expected anthropogenic input for that period) was suggested in the Large Scale
CO2 Observing Plan (LSCOP) report (Bender et al., 2002) as a target for the Re-
peat CO2/Hydrography program. Given this criterion, our results show that, while many5

choices are possible with regards to the structure of the linear regression model used
in eMLR caculations, temporal changes in the observational network exert a first order
control on regression model selection and so on the eMLR-inferred changes in an-
thropogenic concentration. Although limited to the North Atlantic, our analysis outlines
a general strategy, focusing on the vertical continuity of regression formulae, that can10

be used to guide model selection in the oceanographic context.
The principles of the eMLR theory are described first, using matrix notation to cast

eMLR into the general framework of inverse problems. This is followed by a methodol-
ogy section giving the details of the circulation and biogeochemistry model experiments
used to generate the synthetic dataset on which the eMLR methodology is tested. The15

methodology section also includes a description of the regression calculations and the
mapping scheme used. Result are presented in three parts. First, we describe the
structure and variability of the anthropogenic carbon signal. Then, a summary of the
regression results focusing on regression quality and formulae structure is given. The
influence of the various regressions on the absolute error of the eMLR solution is pre-20

sented in the last section. A discussion of potential errors, particularly the problem of
inhomogenous data distribution in time and space, precedes the conclusions.

2 eMLR theory

By design, regression models separate the fraction of the variance that can be ex-
plained by the model and the part that is due to noise. Assuming suitable empirical25

regression models can be found for DIC and that the physical and biogeochemical
processes underlying the model are stationary and not affected by the anthropogenic
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perturbation, the noise can be filtered out and the anthropogenic signal revealed as
the difference between model predictions of DIC at different times (Friis et al., 2005).
Conceptually,

∆DICanth = G2(D2)−G1(D2) (1)

where Gt are empirical model fits at times t derived from the respective data sets Dt.5

Note that, since it is the difference between predictions from two models derived from
two different data sets that is used, a set of DIC predictions obtained from a model ob-
tained from one data set but applied to the other data set is necessary (in this example,
G1(D2)), so that DIC predictions exist for all samples in the data set D2. If the models
Gt are linear, the expression on the r.h.s. of Eq. (1) can be reduced to a difference10

between regression coefficients (Friis et al., 2005).
Regarding models Gt, Tarantola (2005) gives the following expressions (his equa-

tions 3.37 and 3.38) as possible forms of the least squares estimator of the regression
coefficients c̃ and the associated posterior covariance matrix C̃c:

c̃ =
(

ZTC−1
Y Z+C−1

c

)−1(
ZTC−1

Y Y +C−1
c cprior

)
(2)15

C̃c =
(

ZTC−1
Y Z+C−1

c

)−1
. (3)

CY is the data covariance matrix and Cc is the prior covariance matrix of the estimator
with mean prior densities given in the vector cprior. Although this study uses noiseless
synthetic data, consideration of these covariance matrices will be key for the application20

of eMLR on real data. Z is any design matrix containing the variables used as predictors
and Y is a vector containing the DIC observations.

As indicated by Eq. (1), the eMLR estimate of anthropogenic carbon change is ob-
tained by using the different sets of regression coefficients with one of the reference
design matrices, either forward or backward in time. Using Eq. (2), the eMLR quantity25
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predicted with the set of samples taken at time t2 is given by

∆̃C
eMLR
anth|t2 = Ỹ t2 − Ỹ t1 |t2

= Zt2 ·
[(

ZTC−1
Y Z

)−1(
ZTC−1

Y Y
)]

t2

−Zt2 |t1 ·
[(

ZTC−1
Y Z

)−1(
ZTC−1

Y Y
)]

t1

(4)
5

in the limit of no available prior information (Cc
−1 → 0) and with the “tilde” indicating

prediction estimates (Ỹ = Zc̃). The subscripts t2 and t1 associated with the square
brackets apply to every term in the brackets. Zt2 |t1 is the design matrix built from data
at time t2, although adjusted to utilize the variables included in the regression model
derived from time t1. The notation t2 | t1 is introduced to allow for different sets of10

predictor variables (i.e. different regression formulae) to be used in the derivation of
the regression coefficients at either t1 or t2, a generalization of original eMLR (Friis
et al., 2005).

Ideally, since the physical and biogeochemical processes are assumed constant in
time, the structure of the regression formulae should also be constant in time for a given15

region of the ocean. In reality, as sampling intensity in different regions changes, the
formulae of the regression models that minimize residuals in a region may change in
time. Equation (4) explicitly accounts for this possibility.

Equation (4) shows that predicted changes in the carbon concentration can occur
as expected from differences in the vectors Y t1 and Y t2 , but also from differences20

in the matrices Zt1 and Zt2 and from differences in the covariance matrices associ-
ated with variable Y, CY,t1 and CY,t2 . The measurement accuracy of DIC and alkalin-
ity (Alk) has improved after the introduction of the certified reference material such
that, for most samples taken during and after the World Ocean Circulation Experiment
(WOCE), CYt1

≈ CYt2
. The measurement accuracy for DIC between cruises would vary25

by a factor of 2–5 prior to the introduction of reference material, such that these terms
14595
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can significantly contaminate the eMLR signal when using older data sets, as shown
experimentally by Matear and McNeil (2003) and Tanhua et al. (2007).

For uncorrelated errors, an estimate of the errors associated with ∆̃C
eMLR
anth|t2 can

be obtained by linear propagation of the individual projected uncertainties; gener-
ally, the error around a function D(x1, . . . ,xn) can be estimated to first-order by δD =5 √√√√ n∑

i=1

(
dD
dxi

δxi

)2

. Given Eq. (4),

δ
(
∆̃C

eMLR
anth|t2

)
≈
√

C̃Y
2
t2
+ C̃Y

2
t1 |t2 (5)

since the Gaussian posterior probability density of the response variable at each time
(t1 and t2) is constrained by expresions Ỹ = Zc̃ and C̃Y = ZC̃cZT (Tarantola, 2005). This
form of error propagation would be appropriate even if non-linear regression models10

were considered: ∆̃C
eMLR
anth|t2 is expressed as a difference between two terms, which is

a linear operation. One caveat is that Eqs. (3) and (5) do not consider errors associated
with the predictor variables in Z. Only errors associated with variable Y are included in
these expressions. One way to propagate the errors from the elements of Z would be
to use a Monte-Carlo approach, although more direct methods exist to approximate15

errors from the predictor and the response variable in some cases (Tarantola, 2005).

3 Methodology

3.1 Synthetic data set and description of the model

A synthetic data set with known anthropogenic carbon concentrations is used as
a testbed. The synthetic data set is constructed by sampling a global circulation-20

biogeochemistry model (output provided by J. Dunne, Geophysical Fluid Dynamic Lab-
oratory, NOAA, Princeton, NJ, USA) at the station coordinates given by the GLODAP
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(Key et al., 2004) and CLIVAR (defined operationally as data collected after GLODAP)
data sets (Fig. 1) to reproduce the observed sampling grid. To isolate the effect of re-
gression model selection from other sources of error, the synthetic data are assumed
free of measurement errors throughout this work.

The analyses focus on 1995 and 2005. These years were chosen as they are rep-5

resentative of the modal sample density available for the GLODAP and CLIVAR data
sets. Similarly, emphasis is given to July 1995 and July 2005 as July mimics the sum-
mer bias inherent in the data sets.

Our choice of the North Atlantic for this study is motivated by a number of factors.
First, it is clearly a region of consequence for carbon uptake by the ocean. Second,10

the complexity of the hydrographic conditions and water mass structures for the North
Atlantic can be expected to pose particular challenges for empirically-based detection
methods. Third, the relatively large number of measurements in this region suggests
that it is an appropriate context within which to deconvolve uncertainties associated
with the eMLR approach itself and uncertainties associated with mapping errors.15

The simulator is composed of the NOAA/GFDL z-level coordinate Modular Ocean
Model MOM4 general circulation model (Griffies et al., 2004, 2005; Gnanadesikan
et al., 2006) and the Tracers in the Ocean with Allometric Zooplankton (TOPAZ) lower-
trophic level biogeochemistry model (Dunne et al., 2005, 2007, 2008, 2010). Sea-ice
dynamics are modeled by the GFDL Sea Ice Simulator (SIS) (Winton, 2000).20

The ocean model has 50 vertical layers and is resolved on a tripolar grid with an
approximate resolution of 1◦, improved to 1/3◦ meridionally near the equator. Synthetic
profiles isolated from each station are not further sub-sampled in the vertical to mimic
the observations, however. This results in a slight overestimation of the vertical sam-
pling relative to the resolution of the data but the ocean is sufficiently well-sampled25

in the vertical. Horizontal interpolation errors are, for this problem, larger than vertical
ones.

The TOPAZ biogeochemistry module is fully prognostic and includes all major nutri-
ents (NO3, PO4, O2, Si, DIC, Alk), labile and semi-labile dissolved organic matter pools,

14597

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/14589/2012/bgd-9-14589-2012-print.pdf
http://www.biogeosciences-discuss.net/9/14589/2012/bgd-9-14589-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 14589–14638, 2012

eMLR performance

Y. Plancherel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

an iron cycle, ballasting of sinking particles, nutrient and light co-limitation, a microbial
loop, three classes of phytoplankton and zooplankton. Details about the model formu-
lation and performance are available in Dunne et al. (2010), Sarmiento et al. (2010)
and Henson et al. (2009, 2010).

3.2 Simulation configurations and definition of anthropogenic carbon in5

the model

The model was initialized with World Ocean Atlas (2001) temperature, salinity and
nutrients, GLODAP carbon and forced with the NCEP-derived CORE representation of
atmospheric fields and fluxes (Large and Yeager, 2004, 2009; Griffies et al., 2009) over
the period 1958–2006. Surface salinity was restored to observation with a relaxation10

time of 60 days.
The strategy used to isolate the anthropogenic carbon concentration from the model

is described by Rodgers et al. (2009). Briefly, the model was spun up for two repeating
CORE cycles with fixed pre-industrial atmospheric CO2 concentration after initializa-
tion. At this point, parallel integrations were performed: one with a prescribed atmo-15

spheric carbon dioxide transient boundary condition, yielding the contemporary car-
bon signal and one without, giving an estimate of what the evolution of the natural
carbon would have been had the atmosphere remained stable at pre-industrial pCO2
levels. These parallel simulations were repeated for 5 additional CORE cycles with the
atmospheric CO2 concentration increasing monotonically throughout the 5 cycles as20

prescribed by the known evolution of historical atmospheric pCO2. The last cycle is
used as a model surrogate for years 1958–2006 and provides the basis for this work.
Since both branches of integration were forced with exactly the same forcing fields,
the physical fields are identical and the only difference between the two runs are the
concentrations of carbon dioxide in the oceanic and atmospheric reservoirs. The an-25

thropogenic carbon concentration is operationally defined by difference between the
two runs.
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3.3 Regressions and statistics

First-order additive linear models were fitted to the synthetic DIC data sets extracted
from the monthly mean fields of the MOM4/TOPAZ simulations in 1995 and 2005 sam-
pled at both GLODAP and CLIVAR station locations. All 255 possible models, from
single-term to 8-term models, were considered, using the following set of oceano-5

graphic variables (salinity, potential temperature, nitrate, phosphate, silicate, appar-
ent oxygen utilization, oxygen, salinity): Z ⊆ {S,θ,NO3,PO4,Si,AOU,O2,Alk}. An off-
set term (i.e. y-intercept) is implicitly included in each fit but this term is not included in
the following discussion for simplicity. Given the set of variables available in Z , the 255
linear models are given by a+bS, a+bθ,. . . , a+bS +cθ, a+bS +cNO3, etc.10

The best regression models chosen from all possible first-order models were identi-
fied for each size class (1 to 8 term models) and across all size classes and for each
horizontal layer and each month from January to December for the nominal years 1995
and 2005 to investigate the effect of temporal, physical and biological variability on
the ability of simple linear regression models to fit oceanographic data. The minimum15

Akaike Information Criterion (AIC) was used as a guide for model selection across the
complexity spectrum. AIC addresses the bias-variance tradeoff problem when compar-
ing models of different complexity and minimizes the risk of over-fitting. AIC is defined
as AIC = −2ln(L) + 2k,where L is the log-likelihood and k is the number of parameters
in the model. AIC is a measure of residual sum of squares misfit (L) with a penalty20

added (2k) that is a function of the number of terms in the model (Burnham and An-
derson, 1998).

3.4 Mapping

Mapping, that is the horizontal extrapolation of point samples to a basin-scale grid, is
a necessary step in calculating column inventories from GLODAP and CLIVAR sam-25

pling networks. Mapping was performed using a fixed exponential covariance func-
tion with a longitudinal correlation scale of 15.5◦ and a latitudinal scale of 7.4◦ above
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3500 m, or 7.4◦ for both scales below that depth. Analysis of the semi-variograms,
experimentation with the length-scales and other kriging control parameters showed
these scales to be appropriate. This scheme was chosen to mimic the objective map-
ping process used by Key et al. (2004) who used typical length scales of 1550 and
740 km above 3500 m and 740 km in both direction below that depth, and to ease the5

computational burden. In light of the thousands of maps that were produced, a fully
adaptable kriging scheme for each map was not practical. Inventories were calculated
from fields mapped to a 1◦ ×1◦ grid.

4 Changes in DIC distribution

A description of the target signal (change in anthropogenic carbon) and its components10

(change in natural and contemporary carbon) is provided first, before the eMLR results,
to provide context for the signal in relation to the variability captured by the model and
the sampling network.

4.1 The “true” target signal

Figure 1a shows the modeled change in column inventory of anthropogenic carbon15

between July 1995 and July 2005. This panel shows the target signal that eMLR aims
to recover. Figure 1a is calculated directly from the transient (contemporary carbon)
and control (natural carbon) components on the original model grid. Figure 1a shows
that regions with large inventory changes associate closely with water mass formation
regions that are also high uptake regions, notably the Labrador Sea water and the20

North Atlantic subtropical mode water formation regions, but also reflect water mass
reorganization, gyre wobble and frontal shifts in the control simulation.

Both the GLODAP and the CLIVAR observational networks are overlain on Fig. 1a,
showing how some notable high-change regions are entirely missed by the sampling.
One such high-change feature, with column inventory differences above 20 molm−2

25
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and centered around 35◦ W–35◦ N, is missed entirely by both the GLODAP or the CLI-
VAR stations. Another localized high-change feature is situated near 60◦ W–38◦ N and
is similarly omitted in the respective data sets. The Labrador Sea is currently only rep-
resented by the GLODAP stations in our data compilation but data in this region will
soon become available.5

Figure 1b shows the same quantity as Fig. 1a (i.e. the change in vertical anthro-
pogenic carbon inventory), although panel b is obtained from horizontally interpolated
values sampled at GLODAP stations on each model layer and thus includes the ver-
tically integrated mapping error. Mapped fields, using either the GLODAP or CLIVAR
station distribution, tend towards overestimation in the subtropics and towards under-10

estimation in the subtropical/subpolar transition and in the Labrador Sea. Local differ-
ences are only important in small restricted regions (Fig. 1c, d). Absolute errors due to
mapping are small and result in maximum vertically integrated column inventory biases
of order ±10molm−2 (Fig. 1c, d). The kriging uncertainty (uncertainty around the cen-
tral kriging estimator) is of similar magnitude as the absolute error (difference between15

the true value and the central kriging estimator) on given depth layers. Propagation of
the mapping uncertainty is not considered in the following discussion, where only the
central kriging estimator is used as a diagnostic.

4.2 Changes in simulated contemporary and natural carbon distributions

Figure 1e, f show the vertically integrated changes in the transient and control simu-20

lations (the two components used to calculate the anthropogenic signal), interpolated
from the set of samples taken at GLODAP locations. The July 2005–1995 difference
in the transient simulation (Fig. 1e, ∆Ccontemporary) reveals substantial carbon accu-
mulation in the Subpolar gyre, the European Basin and at the southern edge of the
subtropical gyre (≈ 15◦ N) but little change in carbon inventory in the subtropical mode25

water formation region, south of the Gulf Stream. This later point is unexpected as the
mode waters are expected to take up anthropogenic carbon (Bates et al., 1996; Lee
et al., 2003). These features are in fact compensated in the control simulation (Fig. 1f,
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∆Cnatural). The Greenland Current region, the Eastern Atlantic and the southern edge
of the subtropical gyre all show increases in vertical carbon inventories in the control
run (Fig. 1f). In contrast, the Western Subtropical Atlantic shows a drastic decrease
between 1995 and 2005, which, when added to the transient run, results in substantial
carbon uptake in that region, confirming expectations (Fig. 1a, b).5

Inspection of horizontal maps in the ocean interior of DIC change in the control simu-
lation between 1995 and 2005 suggest that the systematic negative change in vertical
inventory (Fig. 1f) in the North American Basin is caused primarily by a decrease in the
DIC concentrations (> 5–10 µmolkg−1) in the deep model ocean (> 2200m). These
deep DIC changes are accompanied by a decrease in the concentration of the other10

nutrients, an increase in oxygen and a slight warming. The Labrador Sea and subpo-
lar basin show large increases in carbon and in nutrient concentrations, a decrease
in oxygen concentrations and strong increases in salinity and potential temperature.
These changes are topographically constrained to the west of the Mid-Atlantic ridge
below 3000 m, but the changes between 2200 and 3000 m suffice to explain the drop15

in column inventory visible in the Northeastern Atlantic (25◦ W, 50◦ N, Fig. 1f). These
patterns indicate that variability in the convective activity and export of the Labrador
Sea and downstream adjustments of the western boundary current properties are re-
sponsible for the large-scale column inventory changes in the Northern and Western
Atlantic (Fig. 1f). The increase in column inventory simulated by the control run at the20

southern edge of the subtropical gyre and Eastern Atlantic are due to gyre dynam-
ics. Increases in the DIC field are observed in this region between 150 and 700 m,
along with changes in other tracers. These changes are consistent with a northward
contraction of the subtropical gyre.

Differences in the simulated annual mean sea surface height (SSH) between 199525

and 2005 agree with the interpretation given above. The patterns of change in SSH do
not reflect the North Atlantic Basin drop in carbon inventory seen in Fig. 1f, suggesting
the source of that feature is in the deep ocean. SSH varies consistently with the signal
observed at the eastern and southern edge of the gyre (Fig. 1f). The regions with
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positive carbon uptake in the control simulation (Fig. 1f) coincide with the regions of
highest interannual variability identified by Cromwell (2006) from an analysis of satellite
SSH data in the North Atlantic. The source of the positive deviation of the carbon
inventory in the subequatorial and Eastern North Atlantic is in the upper few hundred
meters. This pattern likely reflects a real mode of interannual variability captured by the5

model.
The subtropical region with strong negative change in the column carbon inventory

(Fig. 1f) is identified as a low SSH variability region by Cromwell (2006). This is further
evidence that the strong and coherent signal of Fig. 1f is not due to interannual vari-
ability in the upper thermocline. This signal is clearly associated with the Labrador Sea10

water. Curry et al. (1998) have reported on the export of deep subpolar perturbations
caused by variable convection in the Labrador Sea to the subtropics from an analysis of
historical hydrographic data. These patterns of DIC inventory changes are qualitatively
consistent with the known dominant patterns of SSH variability over the North Atlantic
that also affect real data.15

5 Model selection and variability of regression performance

Model selection for eMLR has relied on two approaches. On one hand, models are
assumed a priori based on knowledge of the physical and biogeochemical processes
or data availability. On the other hand, model selection is purely statistical, relying on
stepwise linear regression. In this section, we explore the ability of regression formulae20

to explain the data as a function of depth and time and explore the spatio-temporal
continuity of statistically selected models. We show that, for the most part, there is
convergence of statistically selected model formulae across multiple depth intervals.
This is consistent with the fact that water mass differences are responsible for most of
the variance along horizontal layers. Continuity of the regression formulae should thus25

be used as a model selection criterion in addition to standard measures of statistical
misfit.
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Figures 2 and 3 show the vertical continuity of the model structures selected by min-
imum AIC for the July 1995 GLODAP or the July 2005 CLIVAR data sets. In these
figures, the horizontal axis is regression model number. This represents the full suite
of possible permutations for eight predictor variables, beginning with a model with only
one term (model 1) to the model containing all eight terms (model 255). The color strip5

at the top that maches the figure background summarizes information about model
complexity. Panel c in these figures indicates the models that are statistically best in
each size class (black vertical segments) or overall (white vertical segments), as a func-
tion of depth. Panel a and b summarize the frequency with which particular models are
selected as optimal throughout the water column, plotted either as a number frequency10

(panel a) or weighted as a function of the thickness that a particular model layer repre-
sents (panel b).

Parallel analyses (not shown) for the complementary July 2005 GLODAP and July
1995 CLIVAR cases indicate that interannual variability exerts only a small influence on
the selection of regression formulae. Furthermore, the few observed temporal changes15

in formula obtained for a constant observational network typically only involved one of
the terms in the formula. These term swaps are consistent with the vertical patterns of
changes in standard deviation between data sets constructed from the 1995 and 2005
sampling of the model fields (Appendix A).

Different variance patterns imposed by changing sampling networks is a more impor-20

tant factor influencing model selection than interannual variability. A regression model
derived with data taken from a particular depth range or from a particular sampling
network does not necessarily represent the best fit when applied to a different depth or
a different set of stations since the processes governing the distribution of that tracer
may be different at other depths and the regression model was optimized for a different25

variance pattern.
As Figs. 2 and 3 show, the set of regression models selected between the GLO-

DAP or CLIVAR observational networks differ in each complexity class. These obser-
vational networks put slightly different emphasis on hydrographic structures owing to
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the presence, absence, and density of sampling stations in certain areas. CLIVAR em-
phasizes the Eastern Atlantic and the subtropical gyre. GLODAP samples the North
Atlantic more homogeneously, yielding a more balanced contribution of the subsur-
face Northern Atlantic region, which contains larger nutrient levels and higher oxygen
concentrations than the subtropical region. GLODAP also includes coverage in the5

Irminger Sea, the Iceland Basin and the Labrador Sea: regions characterized by low
temperature and low salinities. As a result of the differences in sampling, regressions
using the North Atlantic GLODAP data are more representative on the basin-scale.

Network differences are reflected in the formulae of the models identified by mini-
mum AIC. A quantitative analysis of the terms in the selected formulae in Figs. 2 and10

3 as a function of depth highlighted the importance of salinity in the top 300 m as an
explanatory variable in the regressions applied to the GLODAP data set. Temperature
and oxygen replaced salinity in many of the formulae produced by the CLIVAR syn-
thetic data in this depth range. This is a consequence of the fact that the dominant
source of variance in the CLIVAR set is the subpolar to subtropical contrast and not the15

East/West Greenland Current and the Labrador Sea as in the GLODAP case. Salinity
took a relatively more important role in CLIVAR between 400 to 1200 m. This reflects
the influence of the Mediterranean Sea overflow water in the Eastern Atlantic, which is
relatively more heavily sampled during CLIVAR. Silicate was more frequently present
in the formulae in that depth range given the GLODAP set of samples. Common fea-20

tures also exist, however, between the formulae structures generated by the two grids.
For instance, the role of phosphate at intermediate depths (200–1500 m) was clear
for both networks. Similarly, alkalinity was recurrently selected in the deep ocean (be-
low 2000 m). Overall, nitrate and AOU were the least often selected variables in the
formulae.25

Regression quality varies also with depth. Overall, the quality of the best fits is lower
in the top 1000 m than below 3000 m (Fig. 4a, c). There is a thin layer centered around
1500 m where fit quality is better for many models than for the layers just below it
(2000 m). This layer corresponds to the position of the Mediterranean overflow water
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in the circulation model. Given that the vertical profile of the range of AIC values on
each layer (Fig. 4b) show a maximum between 800 and 1500 m, model selection can
make a significant difference in the Mediterranean overflow layer. On the other hand,
the vertical profile of the AIC ranges shows a minimum between 2000 and 2400 m
suggesting this depth layer is less sensitive to the form of the particular regression5

formula. The difference between the maximum and minimum AIC value is lowest below
4000 m where the fits are also best, suggesting that many models can be used to
properly represent the DIC field in that range.

While Figs. 2 and 3 indicate that there is some volatility in terms of the models identi-
fied by minimum AIC as a function of depth, quite a few models have AIC values within10

10 % of the depth-specific AIC range from the minimum AIC in each layer (Fig. 4a). Dif-
ferences in AIC values can be relatively small between many of the regression models.
Often, these closely fitting formulae fall in related groups, e.g. the nitrate term replaces
the phosphate term, oxygen and AOU swap. While a strict identification of the mini-
mum AIC values can result in model formulae with different structures, the DIC data15

can be fitted to similar degrees of precision using a variety of different models. Although
this work did not consider measurement uncertainty, this additional source of noise will
further contribute to blur boundaries between regression formulae such that multiple
regression models will be statistically indistinguishable from one another in terms of fit
quality. Investigators will be able to use closely related models for convenience, for ex-20

ample to maximize data coverage in cases when measurements for particular tracers
are missing.

6 Recovery of the change in anthropogenic carbon signal by eMLR

While the question of variable station coverage and associated data set variance is not
an issue when dealing with exactly repeated data sets, it is a dominant consideration25

in the present basin-scale eMLR application. Previous applications of eMLR have re-
quired the structure of the regression formula to be constant as a function of time and
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derived the anthropogenic signal by difference between the regression coefficients.
However, direct subtraction of the regression coefficients is only possible because the
models are linear. The equivalent signal can also be obtained by subtracting the pre-
dicted DIC values obtained after parallel application of the regression equations to the
data from one of the time points (Eq. 4). This second approach opens the conceptual5

possibility of using separate regression models, possibly non-linear models, derived
independently at each time point.

The main argument for using a constant model structure in time is that the physical
and biogeochemical processes maintaining the DIC field are relatively constant and
should thus be constrained by the same empirical models. In practice, there is no guar-10

antee that empirical formulae represent these physical and biogeochemical processes
accurately. In addition, if the observational network varies, the variance in the data will
change and regression formulae will match these different patterns of variance, such
that the concept of “best” formula becomes a function of depth and of the particular
geographic distribution of the samples.15

This section investigates the overall performance of eMLR and contrasts results ob-
tained by the two conceptual approaches described above, namely: strategy (1) use of
a composite of statistically optimized formulae with sets of explanatory variables that
are allowed to vary in time and as a function of depth, and strategy (2) use of regres-
sion formulae with a constant set of explanatory variables at all depths and times but20

with regression coefficients optimized independently at each depth and time. Results
for the basin-scale inventory changes are presented first, followed by column inventory
changes and layer inventory changes.

6.1 Basin-scale inventories

6.1.1 “Best AIC” strategy25

The basin-scale inventory changes inferred from the composite best-AIC eMLR
methodology (strategy 1) slightly underestimate the true inventory changes (Fig. 5).
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The relative error of eMLR estimates varies seasonally from about −3% in November
to −8% in February for the estimate projected onto the CLIVAR stations (green lines).
Due to the ≈ 2.5% overestimation introduced by the mapping process in GLODAP,
the underestimation is less severe in the GLODAP case due to compensating errors;
the relative error in the inventory change estimate is offset by about 2.5 % and varies5

seasonally from about −1% in November to −6% in April.
The simulated (true) change in North Atlantic carbon inventory between 1995 to 2005

(difference taken month-by-month: January 2005–January 1995, etc.) is 4.43 PgC
(Fig. 5) and does not vary significantly through the year indicating that seasonality
is fairly constant between these two years. The error in the “best AIC” eMLR carbon10

uptake estimate is smallest in fall, early winter and largest in the spring. Since the map-
ping error is nearly constant, the exaggerated seasonal cycle of the eMLR estimates
mainly originate from the seasonally varying ability of linear models to fit the data. Deep
convection, shoaling of the mixed layer and initiation of blooms in late winter and spring
all contribute to the presence of sharp property gradients that are difficult to properly15

represent in simple linear models empirically defined over broad geographic scales.
Analysis of regression statistics indicates that it is more difficult to fit first-order lin-

ear models to summer and fall data than to winter data, irrespective of the sampling
grid. Diagnostics or bulk regression quality are usually very good, however. Aside from
a few summer and fall months in the top 100 m where the standard error of the resid-20

uals hovers near 8 µmolkg−1, the standard errors of the residuals are typically smaller
than the typical modern measurement uncertainty for DIC (≈ 4µmolkg−1) and consis-
tently smaller than 2 µmolkg−1 below 500 m. Corresponding seasonal profiles of R2

values produced by the “best AIC” models are typically better than 0.995 below 200 m.
Summer and fall values are slightly lower in the top 80 m and between 80 m and 180 m25

throughout the year (R2 ≈ 0.98). All regressions are significant at p� 0.001.
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6.1.2 Constant formula strategy

The relative and absolute errors in the determination of the change in North Atlantic
carbon inventory resulting from the use of eMLR with fixed regression structures (strat-
egy 2) for both the GLODAP and CLIVAR data sets, projected either backward or for-
ward in time onto the corresponding stations, are shown on Fig. 6 for all 255 first-5

order models. Most calculated inventory changes are within 20 % of the true value,
with a large fraction of the models resulting in an underestimation. The mean relative
error for eMLR across all models is −6% (±2%) and is significantly different from 0
(two-tailed t-test, p < 0.001). The GLODAP and CLIVAR estimates are well-correlated
(ρ = 0.92, Pearson correlation, p < 0.001), confirming that mapping errors are small.10

The across-model average underestimation of 6 % over 10 yr (≈ 0.2PgC) obtained in
this study for the North Atlantic easily meets the LSCOP criterion (Bender et al., 2002):
75 % of the models tested produce carbon uptake estimates within 1 PgC of the true
value. Considering that about one third of the global carbon inventory is in the North
Atlantic (Steinfeldt et al., 2009), 1 PgC is proposed as a North Atlantic target over 10 yr15

in that region. Half of the regression formulae yield results within 0.5 PgC of the true
estimate.

From these results, it is clear that most models will produce estimates of the decadal
basin-scale inventory change that meet desired accuracy limits. For example, all mod-
els with 7 or more terms and the composite best-AIC solutions (strategy 1) for every20

month (Fig. 5) produce uptake estimates that are better than the 0.5 PgC error limit
and thus exceed the success criterion proposed in the LSCOP report (Bender et al.,
2002). Simpler models, such as models Z140 and Z150, which stood out particularly in
Figs. 2 and 3, also fall within the 0.5 PgC accuracy limit. Owing to cancelation of errors,
however, intergral measures may not be particularly sensitive tests of quality. Further-25

more, as simulated changes indicate (Fig. 1a, e, f), the evolution in the distribution of
anthropogenic carbon in the basin is far from uniform. Do all regression models pro-
duce the same distribution or are some models better able to reproduce local features
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than others? This question is addressed in the next section, looking at the column and
layer inventory changes.

6.2 Column inventories

Changes in carbon column inventories resulting from the use of fixed model structures
at all depth on both the GLODAP and CLIVAR data sets (strategy 2) are shown in5

Fig. 7a–h. Only small differences exist between the case when the regressions are
projected backwards in time onto the GLODAP data (Fig. 7a, c, e, g) or forward in time
onto the CLIVAR data (Fig. 7b, d, f, h). Forward projection onto the CLIVAR stations
results in improved results in the East Greenland Current region, where the overesti-
mation relative to the true values is less in the CLIVAR case than in the GLODAP case.10

One systematic feature is the slight worsening of the overestimation near Gibraltar in
the CLIVAR case in spite of the availability of a few samples in that region. This is typical
of most regression models tested in this study. Overall, backward or forward projection
of the results does not make a big difference. In basins where mapping errors may be
a problem owing to data sparsity, however, mapping of the combined backward and15

forward projected results could be performed to improve spatial coverage.
Results from the 8-term model (Z255, 7g, h) produce results similar to the “best AIC”

compilation of models (Fig. 7i). Models with the lowest overall AIC values tend to be the
more complex ones (Figs. 2 and 3) and the model with the maximum number of terms
is the most frequently selected statistically for each depth and each sampling network.20

The error pattern of Fig. 7g–i look similar to the column inventory change pattern
resulting from the natural carbon run (Fig. 1f), although with absolute errors of overall
smaller magnitudes than the vertically integrated natural carbon change. This pattern
similarity indicates that, while eMLR accounts for some of the natural variability, large-
scale natural variability patterns are not fully corrected for, even when the statistically25

best models are used systematically.
The “best AIC” estimate (Fig. 7i), which represents the best statistical solution from

the perspective of minimizing fit residuals, is able to account for many of the dynamical
14610
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changes but not all. Strategy 1 is most sensitive to changes in the sampling network.
Preliminary inspection of the station distribution elsewhere indicates that this effect will
be stronger in other basins. Selecting regression models for eMLR solely based on their
ability to fit data in a statistical sense is not sufficient. Other factors, such as a balanced
basin-wide representativeness of the station distribution and consistency with the basic5

oceanographic structure (spatial continuity of the models) should be considered.
In comparison to the “best AIC” case, absolute error patterns of the vertical inven-

tory change produced by simpler (4-term) constant model structures (strategy 1) are
shown in Fig. 7a, b (model Z100 = {S,θ,PO4,O2}) Fig. 7c, d (Z140 = {θ,PO4,Si,Alk}),
and Fig. 7e, f (model Z150 = {NO3,PO4,Si,Alk}). Models Z100, Z140 and Z150 were se-10

lected based on analyzes of Figs. 2 and 3.
The use of model Z140 produces an error pattern that is most similar to the “best-AIC”

and Z255 cases. The main differences are the amplitude of the overestimation in the
Eastern Atlantic, at the southward edge of the subtropical gyre and the extrapolation to
the Caribbean. The use of model Z100, which in contrast to Z140 does not use silicate15

or alkalinity but rather salinity and oxygen in addition to phosphate and temperature,
produces smaller overestimates than model Z140 in the subequatorial and Eastern At-
lantic. However, it also results in inflated and extended underestimations over the North
American Basin and the Labrador Sea. Model Z150, which uses neither temperature,
salinity nor oxygen as parameters, produces yet other absolute error patterns, typified20

by large overestimations over the Eastern Atlantic and large underestimations over the
Northwest Atlantic. Clearly, various regression models and implementation strategies
result in different column inventory error patterns, even if they produce similar basin-
scale inventory change estimates.

Since some variables are clearly more appropriate in certain layers of the water25

column than others (Appendix A), the next section looks at the vertical distribution
of absolute errors. A strategy is proposed that is intermediate to strategies 1 and 2.
This compromise uses a composite of models in the vertical, selected based on both
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statistical fitness and considers other factors, such as vertical continuity and oceano-
graphic relevance.

6.3 Layer inventories and the role of vertical continuity

Figure 6 shows that good inventory change estimates can be obtained from different
regression formulae. Yet, different regression formulae produce different horizontal dis-5

tributions of the column inventory of the anthropogenic carbon change (Fig. 7). Results
in Fig. 6 can give a false sense of confidence in the ability of eMLR to recover the true
signal and in the value of selecting appropriate regression models. Additional diagnos-
tics, such as the vertical continuity of the regression formulae and an investigation of
the geographical pattern of the residuals (not shown), are necessary to help evaluate10

the quality of anthropogenic carbon estimates produced by eMLR.
Absolute errors of the 1995 to 2005 inventory changes calculated layer-by-layer for all

first-order models (strategy 2) are shown in Fig. 8a. Vertical patterns of the absolute er-
rors in Fig. 8 are consistent with patterns resulting from the AIC analysis in Fig. 4. One
notable similarity is the band of relative AIC highs centered around 2000 m (Fig. 4a, c)15

which corresponds to a region of systematic underestimation of the true layer invento-
ries in the water column (Fig. 8a). The region between 1500 to 3500 m generates most
of the error (underestimation, Fig. 6) in the basin-scale inventory change estimates.
The vertical distribution of the change in layer inventory associated with the natural
carbon simulation (green line in Fig. 8b, c) clearly shows the effect of the Labrador Sea20

Water variability and water mass reorganization.
Illustrative layer-specific inventory change profiles are shown in Fig. 8b, together with

the “best AIC” estimate. Panel c shows the corresponding cumulative layer-by-layer
vertical inventory change, integrated from the bottom to the surface. The composite
“best AIC” eMLR case (yellow line in Fig. 8b, c) does not produce the most accurate25

profile. Based on Fig. 8b, c, a simpler eMLR solution relying on models Z100 in the
upper 1500 m and Z140 below that depth would produce the true uptake inventory profile
almost exactly.
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Absolute errors cannot be used as guides for model selection when working with
real data. Instead, vertical continuity of statistically selected models, in conjunction
with a general oceanographic assessment of the regression residuals, are proposed
as model selection criteria. These criteria can be used to isolate model formulae that
outperform a purely statistical application of eMLR. This approach mitigates the in-5

fluence of changing the observational network and reduces the risk of using empirial
models that are biased towards particular features.

As indicated in Fig. 2, the family of 4-term models shows strong vertical continuity
between layers, with essentially four formulae able to cover all depths from 100 to
4000 m. These 4-term models (numbers 140, 99, 100 and 150, ordered by relative10

frequencies) are Z140 = {θ,PO4,Si,Alk}, Z99 = {S,θ,PO4,AOU}, Z100 = {S,θ,PO4,O2},
Z150 = {NO3,PO4,Si,Alk}.

Model Z140 is the model structure used by Friis et al. (2005) for their North Atlantic
analysis and Z100 is the model used by Levine et al. (2008). Interestingly, while Levine
et al. (2008) applied this structure for the model fields between 200 and 2000 m, Fig. 215

suggest this structure is more appropriate in the upper 200 m. Models Z99 and Z100
are nearly identical, the only difference between the two being the use of O2 or AOU.
Model Z150, which fits the data well in the range 2000 to 4000 m is interesting in that it
does not include either θ or S in its formula, whose dynamic range in that depth range
is small compared to other tracers (Appendix A). This is qualitatively consistent with20

the classic studies of Broecker (1974) and Broecker et al. (1985) who used nutrient-
based composite tracers (“NO”, “PO”) to characterize the flow path of deep waters in
the Atlantic.

While some of the particular models identified from the GLODAP analysis (Fig. 2) are
also present in the CLIVAR equivalent (Fig. 3), their vertical stacking can differ. This is25

the case for models Z99, Z100 and Z140. Given the CLIVAR setup, Z140, the model of Friis
et al. (2005), takes a prominent role in the top 200 m while models Z99 and Z100, the
model of Levine et al. (2008), occupy the space between 300 and 500 m. Models Z97 =
{S,θ,NO3,Alk} and Z98 = {S,θ,PO4,SiO4} belong to the same model group as Z99

14613

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/14589/2012/bgd-9-14589-2012-print.pdf
http://www.biogeosciences-discuss.net/9/14589/2012/bgd-9-14589-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 14589–14638, 2012

eMLR performance

Y. Plancherel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and Z100, which features salinity, temperature and phosphate (or nitrate) as dominant
variables. Z97, Z98 extend the influence of this model group down to about 3000 m,
although the continuity is not as clear as with models Z140 or Z150 in the GLODAP
case.

The differences between Friis et al. (2005) and Levine et al. (2008) can be explained5

by the results of our analysis. Friis et al. (2005) used data located in the Subpolar
North Atlantic (North of 40◦ N, South of Iceland) and many of the data used in the Friis
et al. (2005) are the same data that partly constitute GLODAP (Key et al., 2004) in
that region. It is then reassuring that both Friis et al. (2005) and our results converge
towards the same model (Z140). Similarly, the data set used by Levine et al. (2008) was10

most heavily influenced by the subtropical regions, more like CLIVAR, and it is again
reassuring that model Z100, or related models, be most representative in that case.
Tanhua et al. (2007) used model Z205 = {θ,NO3,SiO4,AOU,Alk}. Since the data set
used by Tanhua et al. (2007) was oriented along East-West sections in the Subtropical
North Atlantic, model Z205 is unrepresentative of the basin-scale data set used here15

and Figs. 2 and 3 show this formula is never selected.
Given that this analysis uses a physical and biogeochemistry model as a source

of data, that Levine et al. (2008) used another circulation/biogeochemistry model and
that Friis et al. (2005) used real data, it is encouraging to note how well the regres-
sion formulae proposed by each study converge when presented in the context of their20

associated sampling grids. Whether a simple combination of the regression formlae
Z100 = {S,θ,PO4,O2} and Z140 = {θ,PO4,Si,Alk} is appropriate for application of eMLR
to the real data set remains to be seen. Based on the analysis presented above, the
fact that the TOPAZ model is a state-of-the-art biogeochemistry model and the robust
correspondence with other studies, it would appear, however, that these are good can-25

didate formulae in the North Atlantic.
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7 Discussion

The focus of this study was to evaluate the impact of regression model selection on
the eMLR results and to make a step towards basin-scale eMLR implementation with
real data by looking at the effects of realistic spatial station distribution on the results.
Although the context of noiseless synthetic data was practical and appropriate for our5

purpose, many simplifying assumptions were made. Some of these assumptions and
other remaining issues for the applications of basin-scale eMLR to real data are dis-
cussed below.

7.1 Unresolved temporal variability

The analysis performed here relied on snapshots of the ocean state taken either in10

1995 or 2005, a situation which is overly idealistic since hydrographic sampling pro-
grams are never instantaneous. July was chosen to approximate the summer bias that
exists in the real data sets, and the years 1995 and 2005 were selected as they rep-
resent peaks in sampling intensity. This section dicusses the possible effects of unre-
solved variability on the eMLR results.15

7.1.1 Seasonality

These analyses have shown that the ability of regression models to fit the DIC data
varies through the seasonal cycle. The summer to winter contrast in the standard er-
ror of the regressions for either the GLODAP or CLIVAR sampling is about 5 µmolkg−1.
This effect is restricted to the upper water column, however. The GLODAP 1995 to CLI-20

VAR 2005 differences in the standard errors of the residuals are typically smaller than
2 µmolkg−1, but are mostly caused by differences in the sampling grid and not temporal
changes, as comparisons with corresponding GLODAP 2005 and CLIVAR 1995 cases
show. Even if the upper ocean contains large anthropogenic carbon concentrations,
the volume is relatively small and changes in seasonality only result in a small signal25
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(4 % amplitude, Fig. 5), small relative to changing the selection strategy of the empirical
models, on the basin-scale estimate of the inventory change.

Seasonal inventory changes estimates (Fig. 5) were derived using month-by-month
comparisons, however, where January 1995 is directly compared to January 2005,
etc. In practice, real data sets are composed of samples taken from different seasons.5

Unless the seasonal biases in sample distribution contained in real data sets were to
change drastically (e.g. all winter versus all summer values), the seasonal bias inher-
ent in the data is not expected to vary greatly between sampling campaigns. Given the
available sample distribution, differences in representativeness of the sampling grids
have a larger effect than changes in the seasonal distribution of the samples. Fur-10

thermore, since regression misfits are largest in the summer and early fall, addition of
winter and spring data should result in an overall improvement of the fit quality, a con-
sequence of reduced biogeochemical gradients during the winter and spring seasons
due to more intense mixing. While seasonal effects can produce local extrema in resid-
uals at particular near-surface stations, seasonal variability tends to be filtered out and15

is not expected to bias the change in carbon inventory estimates obtained by eMLR on
the space and time-scales relevant to the repeat hydrography program.

7.1.2 Sub-monthly variability

The synthetic data sets were generated from monthly mean fields such that sub-
monthly variability is filtered out by design. The magnitude of seasonal variability out-20

weighs sub-monthly variability. Since seasonal variability does not introduce large er-
rors in the eMLR inventory results, and since eMLR is a statistical method that relies
on a large number of data points, sub-monthly variability is not expected to play a role
as long as spatial covariances typical of these temporal scales are small.

There exists an implicit relationship between the spatial scales of the system under25

study and the temporal scales that are smoothed out by regression: any perturbation
must affect a substantial fraction of the data for it to have a noticeable effect on the
regression statistics and the eMLR results. Considering data on the basin-scale for
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the regression analysis is then equivalent to filtering out temporal variability that is
uncharacteristic of that scale and is averaged out. Since about a decade separates
WOCE and CLIVAR, consideration of large domains consistent with spatial patterns of
interannual variability limits aliasing of shorter term variability.

7.2 Temporal sampling density5

The target North Atlantic average uptake rate in the simulation is 0.443 PgCyr−1. This
number is of course obtained from the knowledge that exactly 10 yr separate the mea-
surements. Allowing for uncertainty in the timing of ±2 yr, the uptake rate would vary
from 0.55 to 0.37 PgCyr−1 were one to spread the true signal over 8 or 12 yr. These val-
ues are close to the accuracy limits on the uptake rate implied by the LSCOP criterion10

(0.443±0.1PgCyr−1). Since most of the model formulae produce North Atlantic up-
take estimates that underestimate the true value (by 6 % on average, Fig. 6), assuming
smaller time intervals (by 1 or 2 yr) between data sets would compensate this.

The degree to which the use of a nominal time interval between sampling cam-
paigns, as done here, biases the estimated uptake rate is not clear. This depends on15

the spatial distribution of the data and on how the time interval is distributed spatially,
i.e. how much each station influences the regressions. Based on the noise-free ideal
calculations performed here, it is suggested that if a true inventory change can be ap-
proximated precisely, basin-scale eMLR-estimated uptake rates will remain within the
desired accuracy of the true value if the bias in the characteristic time interval is smaller20

than ±2 yr.
The important problem of temporally staggered samples is not yet resolved in the

context of eMLR. Although interior DIC values can be adjusted to a nominal year, it is
not possible to do the same with all tracers. This may result in possible inconsisten-
cies as samples in different regions can be influenced by different phases of natural25

variability patterns. This effect has yet to be quantified.
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7.3 Spatial sampling density

This analysis has shown that one important aspect of eMLR implementation lies in the
spatial representativeness of the GLODAP and CLIVAR data sets. Ideally, data sets
should measure approximately the same hydrographic regions in the same amount,
otherwise optimized empirical formulae may contain different explanatory variables.5

Emphasis of particular water masses or gradients may result not only from the pres-
ence or absence of data in the region, but also from the station density along hydro-
graphic cruises.

Because of inhomogenous and non-random sampling of the ocean, an eMLR im-
plementation based purely on statistical arguments (i.e. “best AIC”, strategy 1) will not10

necessarily yield the most accurate answer. Analysis of the geographical distribution
of the residuals indicate that misfit is not homogenous but that residuals form large
spatially coherent patterns. These patterns tend to be analogous for similar regres-
sion formulae applied to the different sampling grids, however. As such, structures due
to regression misfit partly cancel when subtracting predictions from similar formulae15

(strategy 2) as part of the computation of the anthropogenic signal.
Although model selection does not influence basin-scale inventory changes very

much, model selection is very important locally. The concepts of a balanced station
coverage and of vertical continuity were used, in addition to statistical measures of
fit, as guides for model selection. Formally quantitative methodologies that account for20

these additional aspect as part of the eMLR calculation are desirable.
In a few regions, multiple repeated cruises are available (e.g. OVIDE section in the

Northeast Atlantic, Lherminier et al., 2007). Using all of these sections in the analysis
will bias the data set towards these particular regions. In such cases, it is best to use
the one cruise track that is most representative of the nominal year used in the analysis25

(i.e. 2005). Because of the temporal data distribution, the eMLR estimate of the car-
bon uptake represents a weighted average over a few years. Repeat sections provide
a rare and valuable opportunity to evaluate the sensitivity of the final eMLR estimates
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to temporal data inconsistencies by replacing the temporally most representative sec-
tion with the others. These repeat cruises can also be used to estimate the detection
limit of any eMLR implementation.

7.4 Additional recommendations

As global eMLR implementations are being attempted, we list here a few additional5

points not addressed in this paper but relevant to the application of eMLR to real data.
First, this analysis was performed on depth layers for convenience (the model output is
gridded to depth levels). An analysis performed on isoneutral surfaces instead of hori-
zontal surfaces would likely perform better because property gradients are smaller on
isoneutrals as water masses mostly mix along these surfaces. Secondly, while work-10

ing in smaller geographical regions will improve the regression fits, the size of regions
should not be so small as to be prone to strong aliasing by time scales shorter than
the time scale inherent to the repeat hydrography program (about 10 yr). Third, solution
of inverse problems, such as eMLR, are best when variables contained in the design
matrix Z are independent. Oceanographic tracers tend to be highly correlated. Opti-15

mizing tracer orthogonality, perhaps using quasi-conservative (Si?, N?, C?, PO, NO) or
dynamic tracers (potential vorticity), will improve conditioning of the problem. Finally,
the influence of measurement errors and possible biases between data from different
cruises will have to be addressed.

8 Conclusions20

The eMLR method was evaluated using output from a global circulation and biogeo-
chemistry model with a known anthropogenic signal. eMLR has so far mostly been
used on exact repeat hydrographic sections or small regions, but not over large scales.
The model was sampled at observed station locations to create synthetic data sets
that mimic the spatial structure of the observed data sets. Analysis of these synthetic25
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data sets has shown that both the station distribution and the selection of regression
models exert strong influences on the eMLR’s ability to recover the true signal. The
model selection process is not independent of the station distribution.

The basin-scale application of eMLR exhibits skill in detecting ocean carbon changes
that fall within the threshold of acceptable uncertainty (10 %) proposed in the LSCOP5

report (Bender et al., 2002). The eMLR method thus presents an opportunity to eval-
uate the evolution of the ocean carbon sink and its rate of change independently from
other estimates, such as Khatiwala et al. (2009), who assumed a steady circulation
and thus did not account for natural variability explicitly.

The interior distribution of the change in anthropogenic carbon shows a complex10

structure. Interior layer inventories can err by as much as 100 % or more when the
analysis is performed on horizontal surfaces and uses inappropriate regression mod-
els, even if the basin-scale inventory change is in agreement with the true value. The
depth range between 1500 and 3500 m is the source of most of the difference between
the true signal and the eMLR-inferred signals in the North Atlantic. This challenge is15

associated with variability in the formation and export of Labrador Sea water. The North
Atlantic eMLR results are particularly sensitive to model selection in that depth range.

This analysis has shown that careful application of the eMLR technique is able to
produce accurate estimates of the anthropogenic carbon change. The analysis was
performed in the North Atlantic as this basin contains about one third of the global20

anthropogenic signal. The North Atlantic is also one of the most hydrographically com-
plex and dynamically variable region. The fact that eMLR produces good results in that
basin suggests that it will likely perform well in other hydrographically simpler and less
variable basins.
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Appendix A

Spatio-temporal variance patterns in the synthetic data set

Given that regression analysis aims to explain the dominant variance patterns in a data
set, changes in the spatial and temporal patterns of variance can affect eMLR results
by influencing regressio model selection. Variance variability can arise either from tem-5

poral variability or by altering the sampling grid, which acts by weighting certain regions
differently in the data set. The structure and quality of linear regressions vary depend-
ing on whether the analyses are performed on sections, on regions, or on isopycnals
such that the regression models used in the eMLR context are ad hoc. This section
contrasts the spatial variance patterns captured by the GLODAP and CLIVAR sam-10

pling networks and discusses the seasonal to interannual changes of these spatial
patterns in the synthetic data set used in this study.

Figure A1 shows the seasonal evolution of vertical profiles of the standard deviation
in the synthetic North Atlantic GLODAP data set for year 1995 for 8 variables. The
standard deviation is calculated horizontally and independently for each month and15

each model layer. A parallel analysis using the CLIVAR sampling grid shows similar
broad-scale patterns, although with slightly different magnitudes owing to the differ-
ent emphasis put on the Labrador Sea and the Eastern Tropical Atlantic between the
two sampling networks. The variables exhibit different zones of low or high variance
(Fig. A1), indicating a priori the role each tracer will take in the regression models as20

a function of depth and highlighting the value of each variable as a tracer for each water
masses.

The seasonal evolution of variance profiles reflects the mechanisms of water mass
formation, gas exchange and ecological succession in the basin. The magnitude of the
seasonal cycle of the standard deviation is typically 10 to 15 % in the upper 200 m for25

the nutrients (O2, AOU, NO3, PO4, SiO4), and 5 % for θ, S, Alk and DIC. Seasonality is
small below 200 m (< 1–2 %). Nutrients show large variances in late summer and fall in
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the top 150 m and relatively smaller standard deviations in winter and spring (Fig. A1),
consistent with the development of the North Atlantic Bloom (Henson et al., 2009).
Temperature shows a maximum variance in spring and summer when the subtropical-
subpolar gradients are strongest. The variance of salinity is small in summer and is
large in winter, reflecting sea-ice dynamics in the northern subpolar region. Seasonality5

of the variance is associated to a seasonal cycle in the misfit error of linear regression
models and in the eMLR results.

Relative to the basin-scale horizontal variance in the data set, 1995 to 2005 variance
changes in the vertical profiles are small. These changes are typically less than 3 %
above 500 m and less than 1 % below that depth. These changes reflect processes10

such as water mass reorganization, gyre wobble, thermocline oscillation, frontal shifts,
etc. Although the level of variance on horizontal slices in the data are relatively con-
stant, this is not to say that point-by-point differences in tracer values or concentrations
do not routinely exceed the standard deviation calcuated over the whole layer. In fact,
point-by-point differences between July 1995 and 2005 for the North Atlantic can be as15

high as 50–100 % in specific regions (East Greenland Current, Labrador Sea, across
the North Atlantic Current, near the equatorial boundary of the subtropical gyre). The
relative constancy of the data set variance in time sampled from a constant obser-
vational network suggests that the point-by-point changes are not a priori systematic
enough as to greatly bias the large-scale representativeness of a given sampling grid:20

the GLODAP or CLIVAR sets of stations would measure features in the same approxi-
mate proportions in 1995 and in 2005.

The GLODAP and CLIVAR sampling grids emphasize hydrographic features differ-
ently because of their variable spatial sampling densities (Fig. 1). Calculated differ-
ences between the basin-scale variances of the GLODAP and CLIVAR data sets show25

typical standard deviation differences of order 10 % between the two observational
networks. These differences also exhibit vertical patterns clearly different from changes
induced by natural variability or either seasonal or interannual time-scales (Fig. A2). In-
terannual variability and variations in the sampling grid both alter the data set variance
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patterns and affect misfit error but interannual variability is secondary to the variance
changes imposed by changing sampling network between GLODAP 1995 and CLIVAR
2005.
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Le Quéré, C., Rodenbeck, C, Buitenhuis, E. T., Conway, T. J., Langenfelds, R., Gomez, A.,
Labuschagne, C., Ramoney, M., Nakazawa, T., Metzl, N., Gillett, N., and Heinmann, M.:10

Saturation of the Southern Ocean CO2 sink due to recent climate change, Science, 316,
1735–1738, 2007. 14590, 14591

Levine, N., Doney, S. C., Wanninkhof, R., Lindsay, K., and Fung, I.: Impact of ocean carbon
system variability on the detection of temporal increases in anthropogenic CO2, J. Geophys.
Res., 113, C03019, doi:10.1029/2007JC004153, 2008. 14592, 14613, 1461415

Lherminier, P., Mercier, H., Gourcuff, C., Alvarez, M., Bacon, S., and Kermabon, C: Transport
across the 2002 Greeland-Portugal Ovide section and comparsion with 1997, J. Geophys.
Res., 112, C07003, doi:10.1029/2006JC003716, 2007. 14618

Lo Monaco, C., Metzl, N., Poisson, A., Brunet, C., and Shauer, B.: Anthropogenic CO2 in the
Southern Ocean: distribution and inventory at the Indian-Atlantic boundary (world ocean20

circulation experiment line I6), J. Geophys. Res., 110, C06010, doi:10.1029/2004JC002643,
2005a. 14591

Lo Monaco, C., Goyet, C., Metzl, N., Poisson, A., and Touratier, F.: Distribution and inventory
of anthropogenic CO2 in the Southern Ocean: comparison of three data-based methods, J.
Geophys. Res., 110, C09S02, doi:10.1029/2004JC002571, 2005b. 1459125

Matear, R. and McNeil, B.: Decadal accumulation of anthropogenic CO2 in the Southern Ocean:
a comparison of CFC-age derived estimates to multiple-linear regression estimates, Global
Biogeochem. Cy., 17, 1113, doi:10.1029/2003GB002089, 2003. 14596

McKinley, G., Fay, A. R., Takahashi, T., and Metzl, N.: Convergence of atmostpheric and North
Atlantic carbon dioxide trends on multidecadal timescales, Nat. Geosci., 4, 606–610, 2011.30

14591

14626

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/14589/2012/bgd-9-14589-2012-print.pdf
http://www.biogeosciences-discuss.net/9/14589/2012/bgd-9-14589-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2003GB002067
http://dx.doi.org/10.1029/2007JC004153
http://dx.doi.org/10.1029/2006JC003716
http://dx.doi.org/10.1029/2004JC002643
http://dx.doi.org/10.1029/2004JC002571
http://dx.doi.org/10.1029/2003GB002089


BGD
9, 14589–14638, 2012

eMLR performance

Y. Plancherel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Mikaloff-Fletcher, S. E., Gruber, N., Jacobson, A. R., Doney, S. C., Dutkiewicz, S., Gerber,
M., Follows, M., Joos, F., Lindsay, K., Menemenlis, D., Mouchet, A., Mueller, S. A., and
Sarmiento, J. L.: Inverse estimates of anthropogenic CO2 uptake, transport, and storage by
the ocean, Global Biogeochem. Cy., 20, GB2002, doi:10.1029/2005GB002530, 2006. 14591

Rio, M.-H., Guinehut, S., and Larnicol, G.: New CNES-CLS09 global mean dynamic topography5

computed from the combination of GRACE data, altimetry and in situ measurements, J.
Geophys. Res., 116, C07018, doi:10.1029/2010JC006505, 2011.

Rodgers, K. B., Key, R., Gnanadesikan, A., Sarmiento, J. L., Aumont, O., Bopp, L., Doney, S.
C., Dunne, J. P., Glover, D. M., Ishida, A., Ishii, M., Jacobson, A. R., Lo Monaco, C., Maier-
Reimer, E., Mercier, H., Metzl, N., Perez, F. F., Rios A. F., Wawnninkhof R., Wetzel, P., Winn,10

C., and Yamanaka, Y.: Using altimetry to help explain patchy changes in hydrographic carbon
measurments, J. Geophys. Res., 114, C09013, doi:10.1029/2008JC005183, 2009. 14598

Sabine, C., Feely, R., Millero, F., Dickson, A. G., Langdon, C., Mecking, S., and Greeley, D.: The
oceanic sink for anthropogenic CO2, Science, 305, 367–371, 2004. 14590, 14591

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R.,15

Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono,
T., and Rios, A. F.: Decadal changes in Pacific carbon, J. Geophys. Res., 113, C07021,
doi:10.1029/2007JC004577, 2008. 14591, 14592

Sarmiento, J. L., Slater, R. D., Dunne, J., Gnanadesikan, A., and Hiscock, M. R.: Efficiency
of small scale carbon mitigation by patch iron fertilization, Biogeosciences, 7, 3593–3624,20

doi:10.5194/bg-7-3593-2010, 2010. 14598
Schuster, U. and Watson, A. J.: A variable and decreasing sink for atmospheric CO2 in the

North Atlantic, J. Geophys. Res., 112, C11006, doi:10.1029/2006JC003941, 2007. 14590
Steinfeldt, R., Rhein, M., Bullister, J., and Tanhua, T.: Inventory changes in anthropogenic car-

bon from 1997–2003 in the Atlantic Ocean between 20S and 65N, Global Biogeochem. Cy.,25

23, GB3010, doi:10.1029/2008GB003311, 2009. 14609
Takahashi, T, Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N.,

Wanninkhof, R., Reely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.: Global sea-air CO2
flux based on climatological surface ocean pCO2, and seasonal biological and temperature
effects, Deep-Sea Res. II, 49, 1601–1622, 2002. 1459130

Takahashi, T, Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W.,
Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson A., Bakker, D. C. E., Schuster, U.,
Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Koertzinger, A., Steinhoff,

14627

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/14589/2012/bgd-9-14589-2012-print.pdf
http://www.biogeosciences-discuss.net/9/14589/2012/bgd-9-14589-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2005GB002530
http://dx.doi.org/10.1029/2010JC006505
http://dx.doi.org/10.1029/2008JC005183
http://dx.doi.org/10.1029/2007JC004577
http://dx.doi.org/10.5194/bg-7-3593-2010
http://dx.doi.org/10.1029/2006JC003941
http://dx.doi.org/10.1029/2008GB003311


BGD
9, 14589–14638, 2012

eMLR performance

Y. Plancherel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille B., Bates, N. R., and de Baar, H. J. W.: Climatological mean
and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans,
Deep-Sea Res. II, 56, 554–577, 2009. 14591

Tanhua, T., Koertzinger, A., Friis, K., Waugh, D. W., and Wallace D. W. R.: An estimate of5

anthropogenic CO2 inventory from decadal changes in oceanic carbon content, PNAS, 104,
3037–3042, 2007. 14592, 14596, 14614

Tarantola, A.: Inverse problem theory and methods for model parameter estimation, SIAM,
Philadelphia, PA, 2005. 14594, 14596

Wallace, D. W. R.: Monitoring Global Ocean Carbon Inventories, Tech. rep., Ocean Observing10

System Development Panel, Texas A+M University, College Station, TX, 1995. 14592
Wanninkhof, R., Doney, S. C., Bullister, J., Levine, N. M., Warner, M., and Gruber, N.: Detecting

anthropogenic CO2 changes in the interior Atlantic ocean between 1989–2005, J. Geophys.
Res., 115, C11028, doi:10.1029/2010JC006251, 2010. 14592

Waugh, D. W. and Hall, T. M. and McNeil, B. I., Key, R. M., and Matear, R. J.: Anthropogenic15

CO2 in the oceans estimated using transit time distributions, Tellus, 58B, 376–389, 2006.
14591

Wetzel, P., Winguth, A., and Maier-Reimer, E.: Sea-to-air CO2 flux from 1948 to 2003: a model
study, Global Biogeochem. Cy., 19, GB2005, doi:10.1029/2004GB002339, 2005. 145911070

Winn, C. D., Li, Y. H., Mackenzie, F. T., and Karl, D. M.: Rising surface ocean dissolved inorganic
carbon at the Hawaii ocean time-series site, Mar. Chem., 60, 33–47, 1998. 14591

Winton, M.: A reformulated three-layer sea ice model, J. Atmos. Ocean. Tech., 17, 525–531,
2000. 14597

14628

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/14589/2012/bgd-9-14589-2012-print.pdf
http://www.biogeosciences-discuss.net/9/14589/2012/bgd-9-14589-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2010JC006251
http://dx.doi.org/10.1029/2004GB002339


BGD
9, 14589–14638, 2012

eMLR performance

Y. Plancherel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 1. (a) Change in anthropogenic carbon column inventory, in molm−2, between July 1995
and 2005 calculated on the original MOM4/TOPAZ grid. (b) Inventory change calcualting after
mapping the true values sampled at GLODAP stations. (c) Mapping error, difference between
panels (b) and (a) for GLODAP. (d) Mapping error for CLIVAR. (e) Changes in contemporary
and (f) natural carbon column inventories between July 1995 and 2005 mapped from GLODAP
stations. Station locations are show in green (GLODAP) magenta (CLIVAR). Both GLODAP
and CLIVAR stations are plotted in (a). In (c), (d) and (f), dashed (negative) and solid (positive)
contour lines are drawn in increment of 5 molm−2. Thick contours mark 0 molm−2.
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Fig. 2. Summary of the best fitting linear models for the July 1995 GLODAP synoptic syn-
thetic data set. Background colors identify models size classes (1 to 8). (a) Relative frequency
(FN/max(FN )) with which models are selected in each size class (minimum root-mean-square
error, black bars) and overall (minimum AIC, white bars). Frequency is computed based on
the number of model layers (FN ) normalized to the most frequently identified model (max(FN )).
(b) Same as (a) but for frequency weighted by the thickness of each layer (FD/max(FD)). (c)
Models with with lowest AIC in each size class (black bars) and overall (white bars) and each
depth layer. Tick marks on the right show boundary between model layers. Tick marks on top
and bottom show model number (in steps of 5). The first model number of each size class is
indicated, except for size classes 1 and 8 (number 1 and 255). Red ticks on the top and bottom
identify models with minimum AIC.
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Fig. 3. Same as for Fig. 2 but using the July 2005 CLIVAR synoptic synthetic data set.
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Fig. 4. (a) AIC values as a function of model number (strategy 2) and depth for the July GLO-
DAP 1995 data set. All models with AIC values within 10 % of the depth-specific range in AIC
of the minimum AIC value at each depth (highlighted in magenta) are highlighted in black. Tick
marks on the right show the vertical location of model layers. Corresponding vertical profiles of
(b) the depth-specific range in AIC and (c) the minimum AIC values.
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Fig. 5. Month-by-month evolution of the anthropogenic carbon inventory change (right y-axis,
solid lines) and associated relative errors (left y-axis, dotted lines) between 1995 and 2005
computed on the original model grid (black), after mapping the “true” values sampled at the
GLODAP or CLIVAR stations (grey) and after mapping the composite best-AIC eMLR solutions
projected onto either the GLODAP (magenta) or CLIVAR (green) observational networks.
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Fig. 6. Relative (left y-axis) and absolute (right y-axis) errors in the determination of the change
in the North Atlantic anthropogenic carbon inventory, projected either onto the GLODAP (blue)
or the CLIVAR (red) stations, by strategy 2 (constant model structure for all layers) between
July 1995 and July 2005 for each of the 255 first order linear models. Model size is indicated by
the color strip on top. Mapping errors calculated from “true” values are show as the horizontal
dahsed blue (2.9 %, GLODAP) and red (0.42 %, CLIVAR) lines.

14634

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/14589/2012/bgd-9-14589-2012-print.pdf
http://www.biogeosciences-discuss.net/9/14589/2012/bgd-9-14589-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 14589–14638, 2012

eMLR performance

Y. Plancherel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 7. Absolute errors in calculated eMLR anthropogenic carbon column inventory change
between July 2005 and 1995 mapped from either the GLODAP (green) or CLIVAR (magenta)
stations. Dashed (negative) and solid (positive) contours are drawn in increment of 5 molm−2.
The thick lines marks the 0 contour. Results shown for models (a, b) Z100 = {S,θ,PO4,O2}, (c,
d): Z140 = {θ,PO4,Si,Alk}, (e, f): Z150 = {NO3,PO4,Si,Alk}, (g, h) Z255 (=all 8 variables), using
the same model structure at all layers and both times but with coefficients that vary in time and
between layers (strategy 2) and (i) for the “best AIC” models selected by minimum AIC for each
layer and each time point (strategy 1).
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Fig. 8. (a) Absolute errors between the North Atlantic eMLR predicted inventory change,
mapped from estimates at GLODAP stations, and the true inventory changes integrated on
each horizontal model layer (Σh) and for each first order regression model (strategy 2). (b) Ver-
tical profiles of the layer inventory changes and (c) vertically integrated layer inventory change
(from the bottom to the surface, Σv). The true, natural and contemporary (Cont.) layer inventory
changes between July 1995 and July 2005 are shown, together with the “best AIC” composite
solution and results from models Z100 and Z140 (dotted).
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Fig. A1. Monthly vertical profiles of the horizontal spatial standard deviation, from January to
December, expressed in (a) ◦ C, (b) psu or (c–h) µmolkg−1, for the hydrographic variables used
in this study for the year 1995 as sampled on the GLODAP grid. Tick marks to the right of the
main panels show the vertical position of the vertical layers in the circulation model.
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Fig. A2. Monthly vertical profile of the month-by-month relative changes of the horizontal
spatial standard deviation, from January to December, expressed in percent relative to the
1995 values, between the synthetic 2005 CLIVAR data set and the 1995 GLODAP data set for
the variables used in this study. Tick marks to the right of the main panels show the vertical
position of the layers in the circulation model.
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